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641033 Camera Calibration

1 Introduction

Resectioning or calibrating a camera means to estimate the parameters of the lens and the sensor device of

the camera. To estimate these parameters one needs 3D world coordinates and their corresponding 2D image

points using multiple images of a calibration pattern. Assuming there aren’t any inaccuracies (due to noise or

outliers) in these correspondences and the position of camera relative to object is known then we can simply

apply equations to obtain the required parameters.

However, in reality there will always be errors in matching up the corresponding points of image distance

between a projected point and a measured one. We can apply RanSac algorithm to reduce outliers by choosing

the best fitting points only. Assuming the noise in the correspondences is mainly Gaussian, we can minimize the

variance between image locations and predicted locations. This optimization is known as bundle–adjustment.

Our project implements these two procedures to find a near accurate K-Matrix of required parameters.

1.1 Aim

The aim is to estimate and optimize the intrinsic parameters of a simplified ideal pinhole based model of a

camera. My report attempts to test and explain the algorithms used and suggests further actions that can be

taken to achieve a commercial solution.

1.2 Motivation

Knowledge of intrinsic parameters is very useful in finding real world distances of planar objects (from a single

camera) if we know the position where the camera is mounted. Inversely, if we know distances in an image then

we can estimate the camera location. Using stereo cameras we can estimate depth as well, which is useful in

visual odometry which has many applications in robotics for example in localization for self-driving cars.

2 Outline

2.1 Simulation

In practice we would use an actual calibration object like a checkerboard pattern with known distances between

edges. In this project, we simulate the calibration pattern. We use a known K-matrix with pre-defined param-

eters to make correspondences. In reality the K matrix is unknown. Through algorithms edge detection of the

calibration object is possible. We then feed the known distances between these edges to the program to build

the correspondences. In addition we input the 6 degrees of freedom needed to define the location of object in

world coordinates (e.g. using lidar sensors). Instead, in this project we have functions to position the camera

and position the object in world coordinates. A good test that these functions are working as expected is to

view a simulated cube as seen by the camera as shown in figure (1). Note the 4 MegaPixel(MP) camera hence

2000 x 2000 pixel dimensions of the image. The cube was built by inputting each edge as a combination of cube

vertices.
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(a) Simulated cube in camera’s field of vision.
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(b) Noisy grid image appears on camera sensor.

2.2 Initial Estimate

2.2.1 Estimating Homography

We build correspondences between object coordinates (xy) and image points (uv) using position of object

relative to camera. K parameters and the positional parameters are packed in the Homography elements hi,j

and our task is to estimate H. Using j = 1 to 4 known point correspondences we can stack the 4 matrices to

build a determinate system of equations having 8 unknowns and 8 equations. Solving this system will give

us an estimate of Homography. But how do we know that the 4 points we have chosen to estimate it are all

inliers? Thus we perform RanSac to select those pixel points which fit well with the H. Now we have an over-

determined system with as many equations as the inliers. This system of equations is P = Φ H. We expect the

correspondences to be noisy, hence no exact solution will exist. We therefore use least squares minimization.

min|ΦH−P|2 =⇒ ∂|ΦH−P|2

∂(parameters)
= 0 =⇒ H = [ΦTΦ]−1ΦP (1)

Φ (i.e. Regressor made of uv and xy coordinates) and P (i.e. uv coordinates) are known. We use singular value

decomposition (svd) to compute the inverse in Equation 5 because that is computationally cheaper than using

matlab inverse (See Section 4.2). This is called pseudo-inverse. Now we have estimated the Homography.

2.2.2 Estimating K-Matrix from Homography

Finally we want to estimate the K matrix from this Homography using 3 images of the grid taken from different

angles. We pre-multiply both sides by K inverse. Hj = λjKj[r1r2t]j =⇒ K−1Hj = λj [r1r2t]j We use

the orthogonal property of the rotation matrix by pre-multiplying the Homography with the rotation matrix

transpose (or inverse) Hj
T (K−1j )TKj

−1Hj = λ2I. This equation holds true for each image j and can be used to

make a homogeneous equation of form Ax=0 to solve for φ = (K−1)TK−1 again using svd(A) = UDVT and

right singular vector of matrix φ associated with the smallest singular value. This is because for a homogeneous

system any vector x in the null space of A is a solution hence any column of V whose corresponding singular

value is zero is a solution. If we want a particular solution then we might want to pick the solution x with the

smallest length |x|2. We then obtain K from Φ using cholesky factorization because we note that (K−1)T is an

upper triangular matrix and K−1 a lower triangular matrix.
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2.3 Optimization

So far we have reduced outlier effects using RanSac. Gaussian noise still prevails. We can tackle this using

optimization of the cost-function (E) defined as the least squares error between estimated and true values of

uv. E = 1
2Σ(Estimated[u′v′] − True[uv])2 Note that least squares form of cost function is an efficient way to

eliminate noise but not outliers as it heavily penalizes Outliers. Thus, we have chosen the two step approach

- RanSac followed by least squares optimization. This is a convex optimization problem (cost function is

quadratic) hence we expect the global and local minimum to be the same. We decompose the Homography

into the K-Matrix and positional parameters and then use this to predict the positions of points in the image

using these transformation matrices and the current best camera matrix. The square of this minus the actual

positions serves as our convex cost function.

We will use the Levenberg-Marquardt algorithm to adjust parameters and decide when the minimum is

reached. Steepest descent is a method to reach minimum by varying parameters δ p along the steepest downhill

direction on the surface i.e. pointing along the negative gradient vector. δp = −(∂E
∂p )T = gn. Newton steps

method is based on taking the derivative of Taylor’s expansion in N-dimensions as shown in Equation 2

∇(f(x + δx)) = 0 =⇒ gn + Hnδp = 0 =⇒ δp = −Hn
−1gn (2)

This gives the iterative update xn+1 = xn − Hn
−1gn where Hn is the Hessian matrix ∂2E

∂p2 . It is better to

perform line search which ensures global convergence hence we introduce the parameter µ in Equation 3

xn+1 = xn − µHn
−1gn And combining Equations 2 and 3 (Hn + µI)δp = −gn (3)

By solving for δp we we know the vector along which to change our parameters for the next iteration. We

re-compute the cost at the new parameters and assess whether to reject the parameters or accept them as well

as whether to increase or decrease µ i.e. we can control between Newton steps and gradient descent.

3 Overview of the Structure

3.1 Data Structure

When designing code you have to consider how to encapsulate the data so that flows are clear and match the

control structure. I stuck to follow a structure of many interacting functions instead of creating large objects

with many tasks. For e.g. in the Jacobian function I used Rodrigues function to make Rotation matrix from

angle-axis instead of doing that calculation inside the Jacobian function (shown later). Another e.g. in Jacobian

function is I made a function for the task of perturbation because: less scope of error and re-usability. This

modular structure also is compiler efficient and useful to scale up. Someone using this code for calibration

may not input valid parameters so I validate parameters before running a function but there’s a risk of passing

parameters in the wrong order. Thus structures are good for passing long lists of parameters as the named
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fields are safer. Cell structure was used for storing data as the objects stored had unknown and variable sizes.

MATLAB’s sparse matrix data structure is a good choice for storing the entire Jacobian as there are several 0

terms. However, as I later show this was not the preferred way of finding Jacobian.

S = sparse(A) % converting the matrix to sparse storage saves memory.

3.2 Control Path

FlowCharts for Algorithms used

(a) Estimation task involving RanSac (b) Optimization:the L-M algorithm

Figure 2: Flow charts for the two algorithms used to reduce Outliers and Noise respectively.
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RanSac flow

RanSac algorithm eliminates outlier points - in this case pixels displaced from their true positions in the

calibration image. While estimating homography from the edges of the checkerboard we take 4 random point

correspondences to build our regressor Φ. To ensure these points are a true representation of the objects (inliers)

we perform RanSac. We use RanSac to choose only that homography estimate which best agrees with maximum

number of points on the checkerboard. The flowchart in Figure 3a shows this algorithm. Note that UV cordintes

are the known points or true points. We multiply the estimated homography with the xy object coordinates

to obtain estimated U’V’. RanSac compares the difference between the U’V’ estimated via homography and

the true UV with a threshold MaxError and populates a vector BestConsensus that satisfies this threshold as

acceptable inliers. We construct our Regressor of the over-constrained system and use svd to find the least

squares estimate of our final homography if the condition number is “good” as accurate inverse is possible. As

good coding practice I catch error using ’try’ ’catch’ to ensure inverse exists. With a good homography estimate

it is straightforward to compute K using svd as mentioned in Section 2.2.2.

Optimization flow

The algorithm controls the search to move from steepest descent to newton steps depending on how well the last

search performed. The feedback mechanism is that if error has increased after changing the parameters along

a certain direction then the weighting µ is increased reducing the step-size and causing the algorithm to just

search downhill. If the error has reduced then we are closer to the minimum so we search in the neighborhood

itself using Newton steps.

3.3 Why our approach?

(a) Outliers (b) Noise

Figure 3: Graphical representation of impact of Least Squares minimization on Noise and Outliers.

Suppose you fit a straight line to data containing outliers, the usual method of least squares estimation is flawed.

It will penalize outliers excessively and lead to poor fit. Thus we must first get rid of these outlier and then

apply Least Squares optimization. This is precisely our method. The way I add random noise is by passing σ

and µ as flags in the BuildNoisyCorrespondences which can be changed from RunEstimateHomography script.

% Adding Gaussian noise with a changeable variance to the image

CalibrationImage = CalibrationImage + random(’norm’,mu,std,m,n);
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4 Detailed Considerations

4.1 How to measure accuracy

(a) No. of columns = all points on the grid (b) Contains all points on the grid

Figure 4: The workspace data structure dimensions verify all points are inliers.

Noise and Outlier Test

The simplest was to set the noise σ and µ = 0 and pOutliers=0 in the Correspondence matrix.

Hypothesis: There are now only inliers i.e. all correspondences are accurate so estimating homography from

any 4 points should give error of ≈ 0, since u’=u and v’=v. No points are excluded from Consensus vector.

Result: This was verified as seen in Figures 4 (a) and (b). Also K estimated is the same as the K-Matrix.

RanSac runs Test

The second experiment was to vary number of RanSac runs and examine its effects on the accuracy of Kestimated.

The accuracy metric used was the L2 norm because p > 2 norm penalizes greater deviations too much while

p=0 or p=inf norm maybe less representative of all elements. L2 norm is a least squares so it makes sense to

judge the performance of least squares minimization although L1 norm is also a valid choice. A better metric

may be % error but 4 of 5 elements of K are 0 hence it is hard to find % change from 0. The noise and pOutlier

were control parameters.

Hypothesis: More RanSac runs means more number of homographies to choose from to use as best fit for

correspondence points. Better outlier rejection, hence a more accurate K estimate.

Result: The general trend corroborates this expectation as seen in Figure 5a.
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(a) Number of RanSac runs.
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(b) MaxError in RanSac.

(c) Fitting

Figure 5: Varying Ransac runs and MaxError to find effect on Accuracy.

MaxError Test

Hypothesis: Decreasing the MaxError means we are decreasing the threshold of accuracy (more strict) for an
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estimated u’v’ to be part of consensus set. So we will have more strictly selected inliers discarding even slight

deviations hence more accuracy.

Result: For both very high or very low MaxError values the accuracy drops. For very high MaxError there are

too many points including many outliers so lowered accuracy in Fig. 5b . Why lower accuracy for low MaxError

then? Because of over-fitting i.e. having too many parameters relative to the number of observations so

estimate can overreact to minor fluctuations in the training data. If the max error is too low, there will be very

few points (very selectively chosen) in the consensus and in the regressor for the robust inverse (svd) calculation.

I wrote extra script to output how many points are there in Bestconsensus set for a given Max Error value and

found that for MaxError of 10−4 and a noise σ of 0.1 we just have 10 elements and this reduces if MaxError is

further reduced or if noise σ is increased. Homography has 9 parameters.

Test for Jacobian calculation
For optimization I calculate the jacobian matrix by writing forward-difference function. The perturbation was
set to 0.001 % of the parameter and we used a for-loop to manually differentiate (perturb, subtract and divide)
with respect to each parameter and construct our blocks as shown in the code below:

% We are estimating the derivative using f’(x)=[f(x+dx)-f(x)]/dx w.r.t each of 11 parameters

% Perturb each K parameter by a small percent of itself turn by turn and store each perturbed matrix

k1 = KMatrix;

k1(1,1) = KMatrix(1,1)*perturbation; % ... and so on until k5(2,3)=KMatrix(2,3)*perturbation;

% Find new estimated uv from each perturbed kmatrix. This is f(x+dx) in f’(x)=[f(x+dx)-f(x)]/dx

fk1 = k1 * P *[XY; 1]; % ... and so on until fk5 = k5 * P *[XY; 1];

% This is f’(x). We divide by fk(3) to scale it back to original.

dk1 = (fk1(1:2)/fk1(3)-UVest)/(KMatrix(1,1)*(perturbation-1)); % ... and so on until dk5;

% Finally constructing our K parameters block consisting of 5 columns and 2*no. of points rows

NKMATJACOB(2*a-1:2*a,:) = [ dk1 dk2 dk3 dk4 dk5 ];

To test the accuracy of this function, I wrote another function using symbolic MATLAB toolbox which
textitanalytically finds the entire Jacobian and then I select the required blocks from that, as shown (some lines
omitted for conciseness):

% Parameters come from KMatrix, Rotation axis and Translation vector

K = sym(’k’,[3,3]);

RotAxis = sym(’rot’,[1,3]); % etc. for other parameters

% fin is calculated symbolically in terms of the 6 extrinsic parameters in P and 5 intrinisic in K

for i = 1:n

XY = Correspond(3:4,BestConsensus(i));

f = K * P * [XY’ 1]’;

f = f/f(3);

fin = [fin;f(1:2,1)];

end

Var = [(1,1),K(1,2),K(1,3),K(2,2),K(2,3),RotAxis(1,1),RotAxis(1,2),RotAxis(1,3),t(1,1),t(2,1),t(3,1)];

% symbolically forming the two blocks using the jacobian library function

JKMat = jacobian(fin,Var(1,1:5)); JFram = jacobian(fin,Var(1,6:11));

% Substituting in the parameters one by one like shown for K parameter below

J1 = subs(JKMat,K,KMatrixValues);

MATLAB’s ’jacobian’ library function uses symmetric central difference and other algorithms. It’s an

analytic approach and more accurate than simply forward difference. However, it’s computationally expensive

as the zero-terms of the Jacobian are computed which can otherwise be avoided by only calculating the required
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blocks (as done in the former above). Both results were nonetheless similar, thus we prefer the first method.

4.2 Is this simulation a good model of the real world?

There are approximations and assumptions in any model. Here are a few:

A) I.I.D. Noise Principal sources of Gaussian noise in digital images arise during acquisition e.g. sensor noise

caused by poor illumination, high temperature, transmission e.g. electronic circuit noise. A typical model of

image noise is Gaussian, additive, independent at each pixel. Obviously, there are other noise sources that are

not Gaussian e.g. Salt-and-pepper noise (caused by analog-to-digital converter errors), Shot noise (statistical

quantum fluctuations), Quantization noise (quantizing the pixels of a sensed image to a number of discrete

levels), Anisotropic noise (noise sources show up with a significant orientation) etc. Thus Gaussian noise is an

approximation not totally representative of truth. Based on this assumption we have chosen cost function as a

least squares minimization.

B) Outliers An outlier in an image is often a region that has been occluded, an object that suddenly ap-

pears in one of the images, or a region that undergoes an unexpected motion (due to slight camera motion).

Outlier modelling is a field on its own. We have used a simplistic way of adding outliers at random pixels.

C) Lens distortion We have used an ideal pinhole simplification excluding radial and tangential distortion.

Radial Distrortion occurs when light rays bend more near the edges of a lens than they do at its optical center.

The smaller the lens, the greater the distortion. Tangential distortion occurs when the lens and the image plane

are not parallel.

D) Algebraic approximations: For mathematical and computational simplicity we have used certain ap-

proximations. For instance to calculate matrix inverse we use svd ’pseudo inverse’. For determining stopping

criterion, instead of comparing Gradient to 0 we set the criterion to a really low number such as 1e-5. For

computing the Hessian as second partial derivatives we approximate it as JTJ thus using the jacobian already

calculated.

5 Measures of Code Performance

5.1 Noise
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Figure 6: Effect of varying noise
variance on accuracy of estimation.

Fig. 6 shows the trend that more the noise variance i.e. the image

pixels of calibration image are more apart from their true values then

the worse the error between the norm between true Homography matrix

and the estimated. Although there is one outlier in the above trend, that

is reasonable since we are randomly choosing points each time we run

the estimate. So even with the same value of standard deviation and

every other parameter, there will be variations in the error values which

is why we can explain that as long as the trend is towards worse error
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with increased variance we can ignore this particular outlier.

5.2 Speed

(a) Using library jacobian function. (b) Using forward difference.

Figure 7: Timing performance for the two methods to compute Jacobian.

The Figure 7 shows how the analytic jacobian compares with the forward

difference method. The self-time (i.e. the time taken in that particular

function excluding the ’child’ functions) for finding the Jacobian compares so:

% improvement = 0.068/(0.264-0.068) = 35 %

While the total time taken i.e. includes the cumulative time over all the iterations and Ransac runs is incompa-

rable 0.497s vs 108.64s. For calibration speed is less important than robustness but the two methods are almost

equally accurate. Thus, we clearly prefer the approximate forward difference method.

6 Conclusions

6.1 How would I input real data?

This project simulated the calibration image. In reality we would use an image of an actual calibration image

and after calibration only deal with real images.The image would be treated as a matrix of intensities. Using

edge detection we can find boundaries of objects within image by detecting discontinuities in brightness.

Common algorithms include Sobel, Canny, Prewitt, Roberts, and fuzzy logic methods. The MATLAB command:

BW = edge(I,<type of algorithm>,threshold,direction)

returns a binary image BW containing 1s where the function finds edges in the input image I and 0s elsewhere.

It returns edges that are stronger than threshold. The input image I is an intensity or a binary image. Then

we can enter known distances between them in the calibration image. After it is calibrated, we can use K-

Matrix and Extrinisic parameters (from the position where we mount camera with respect to object) to find

the real-world distances simply from an image of the planar objects.
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6.2 How well did you do?

(a) Actual or true KMatrix. (b) Estimated (cut off exp(3)) (c) Optim. K (≈ estimated)

Figure 8: Comparing the final K-optimized and K-Estimated. Noise σ =0.2, Stopping criterion value =1e-8

Optimization performance of both methods is compared below by varying the Stopping Criterion (S.C.).

Method S.C.=1 S.C. = 1e-3 S.C.= 1e-8 S.C. = 1e-9

Forward Difference 42.0531 28.137 3.0238 too many iterations

Analytical 41.432 27.438 2.983 too many iterations

Accuracy metric used was L1 norm as discussed in Section 4.1 although other metrics are also valid. Results

from both methods were similar so I concluded that forward difference approximation might suffice in this case.

It nevertheless served as a good test to verify Jacobian. To compare the two methods I kept noise σ as an

important control variable because the it has a direct impact on the optimization’s performance.

The stopping criterion is chosen such that we can be reasonably sure that the minimum of the function has been

reached i.e. the norm(gradient) is ≈ 0. Clearly keeping a high stopping threshold such as SC = 1 (see table)

leads to lower accuracy. At the same time a very low SC = 10−9 meant the code never exited the optimization

loop even after 100 iterations. As seen in Fig 8 the Estimated and Optimized K is nearly the same and this is

expected as both are obtained by minimizing a least squares cost function and this is a convex problem.

6.3 Commercial product

Finally, how close are we to make this into a commercial software? This has partly been answered in Section

4.2 where we have discussed the assumptions, approximations and simplifications of this model. A commercial

standard product may be able to improve on some of those for instance take the lens distortion into account

or apply statistical noise and outlier models depending on the kind of image taken. Adding a GUI that can let

the user input an image and automatically output the K-Matrix or the real-world distances from an image, are

required for good user experience. If more computational power is needed then the commercial solution should

be able to harness GP-GPUs remotely if needed. For instance this could be a web-application which utilizes

immense computational hardware in a data center. Lastly, there is a possibility to apply statistical testing to

predict with a certain confidence level how accurate is our estimate and the Type of Error (I or II).
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