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Overview

• Causal inference stems from the recognition that there exists data generating 
mechanisms  under the phenomenon of interest


• We only have partial knowledge of the model of such mechanism


• In fact, we only observe some features and data that are emitted by this 
mechanism - an analogy is we see smoke, we know that comes from fire but 
we don’t see the fire or how it was made


•
Observables

Underlying mechanism (unobserved)

Smoke



Different types of data have different value
Let’s take a very physical viewpoint on this cost

 In increasing order 

• Observational P(X) - prima facie - done using sensors (camera etc.)


• Joint observations P(X,Y) — done using sensors AND human labelers- more 
expensive 


• Conditional P(Y|X) computed from Joint and then marginalisation


• Interventional (cost of experiments that include changing physical setting etc.) 


• Counterfactual - imagining different observations and their outcomes (can be 
infinite cost if these are not realisable) ….



Kalman Filter (ubiquitous in autonomous cars)
Algorithm to estimate under uncertainty 

• The most common way to deal with this uncertainty is to use an algorithm 
called Kalman Filter (KF). A KF is based on a predictor-corrector structure


• The algorithm models physics of the robot such as displacement, velocity, 
acceleration etc. 


• Importantly the algorithm keeps room for uncertainty in the form of a 
Multivariate Gaussian with zero mean and flexible variance


• The algorithm updates its predictions and uncertainty estimates using 
measurements (again it allows for uncertainty in measurements)



A motivating example from Robotics
Before going into theory, let’s ground our intuition in a real world problem

• Probabilistic robotics deals with uncertainty due to :


• 1. Unmodeled physics 2. Measurement noise


• This image shows the prediction estimate based on physics and 
measurement noise from a beacon to determine the robot’s position



Robot Kalman filter example
Let’s model an autonomous boat that must navigate in the sea

• Predict Equation:    


• Where: x(k|k-1) - state prediction at time step k conditioned on previous time 
step


• F - Plant model (Pre-determined system model e.g. a constant velocity model


• B - Process noise model (noise due to unmodelled uncertainties e.g. wind/air-
resistance/unexpected bumps in the road etc.)


• u(k) - Control vector which indicated action taken by robot in units of 
acceleration

x(k |k − 1) = F . x(k − 1 |k − 1) + Bu(k)



Robot Kalman filter example
Predict equation (closer look)

• 


• 


• Here we see the Plant model is chosen to be a constant velocity model


• Any acceleration due to unmodeled factors are considered as noise 


• The typical simplifying assumption is that Q, the process noise covariance is 
that it is drawn iid from 

x(k |k − 1) = F . x(k − 1 |k − 1) + Bu(k)

⟹ [x
·x]t

= [1 Δt
0 1 ] [x

·x]t−1
+ Q [0.5Δt2

Δt ] ft
m

Q ∼ N(0, I)



Any ways to improve on the prediction model?

• Typically feedback comes from measurement in the form of the difference 
between the predicted and observed state


• Let’s consider modelling the uncertainty in the plant model in a causal setting


• Let’s say that there are two external forces in our system namely wind and 
waves of the sea


• Can we utilise this knowledge to formulate a causal problem?



• The relations between wind and waves on the displacement can be captured 
in a joint distribution


• Both wind and waves will have an effect on the boat’s direction and 
displacement


• The displacement of the boat is clearly correlated with the velocity of the boat


• Can we make a causal diagram from this information?



• In the interest of making the joint smaller for illustration only, assume wind 
and waves can blow along only 1 dimension and the direction in indicated by 
+1 and -1

Wind Waves x dx/dt

1 1 2 1

1 -1 0 0

-1 1 0 0

-1 -1 -2 -1



Causal diagram of our autonomous boat system
Utilizing causal relations of the surroundings

Wind

Waves

Displacement x Velocity dx/dt



Can we leverage this knowledge of the physical surrounding ?
Can we improve the Kalman filter navigation algorithm?

• Let’s say we wish to use this causal information to improve:


• 1. The accuracy (low error) of the predicted state vector


• 2. The uncertainty (low covariance) in the predicted state vector


• 3. The time taken for the Kalman filter to converge to the true state


• So that the boat doesn’t hit an obstacle, doesn’t steer off course, is not very 
bumpy and is safe.


• How can we achieve these aims?



Some ideas:
Observation

• Use wind as an early indicator? 

• Wind variable is a parent of the waves so it could be a warning that the 
boat will be pushed in a certain direction if we measure wind speed. 

•



A modification 
Now let’s suppose the autonomous boat has a wind sail

• and we wish to use the Kalman filter to control the sail position to help 
us navigate Wind

Waves

Displacement x Velocity dx/dt

Windsail Control



Possible joint due to the interaction of wind sail

• SAIL mirrors wind in this case (sail is programmed to follow the direction of 
wind)

Wind Windsail Waves x dx/dt

1 1 1 3 2

1 1 -1 -1 0

-1 -1 1 1 0

-1 -1 -1 -3 -2



Intervention
This lets us ask new types of questions now

• What would be the effect on the velocity of the boat if the windsail was 
set to value SAIL = 1 (a certain direction) & we observed wind =1, 
waves=-1 (note we are detaching effects of wind on SAIL) 

• This intervention has not actually been realised but the autonomous 
system would like to know the probable effects before actually 
performing this control action  

• Would the system be able to infer this just from the observations of the 
wind and waves?



Counterfactual
Yet another type of question

• Given that we have observed for wind = 1 and waves = 1 sail=1 that x = 3


• what position ‘x’ would the boat be at if it were the case that wind=1 waves 
=-1 sail=1


•



Formalism of the above concepts 
Let’s conclude the motivating example and make the ideas formal

• It is clear that the underlying mechanisms behind the observational data must 
be accounted for


• There are categories of questions to be posed


• Aim: use observations to answer questions about 


    unobserved events


• We are inspired to breakdown a phenomenon into modular components and 
describe how these components interact to produce an emergent behaviour 


• Doing so allows surgical intervention, decision making & autonomy



Structural Causal Models (What?)

• An SCM denoted by  is a way to formalise the underlying process that 
generated the data which we can observe. 


•  is a set of background variables i.e. things we do not wish to explicitly 
model in our system but contribute to the uncertainty of variables we care for


•  is the set of variables that we care to make causal queries on and are 
determined by other variables in the model 


•  is a set of functions that relates observable variables to its parents and 
unobserved variables 

𝕄
𝕄 = ⟨U, V, 𝔽, P(U)⟩

U

𝕍
𝕍 ∪ 𝕌

𝔽
vi ← fi(pai, ui)



How SCMs relate to the autonomous boat?

• U = factor affecting wind and waves e.g. temperature & pressure of an unknown 
place (because of complex spatial interactions)


• V = wind, waves, sail direction, displacement, velocity


• P(U) = from meteorological data we can determine distributions over wind & waves 
but they are too complex to have a deterministic function


•
F =

wind ← fwi(UT, UP)
waves ← fwa(UT ∧ wind)
sail ← wind
x ← wind ∧ waves ∧ sail



Seeing (Layer 1) 
Formalized as a mapping of events that occur with some uncertainty

• A joint distribution and conditional  and 


• Nature evaluates F i.e. maps an external unobserved state which is 
distributed as P(U) into an observed state distributed as P(V)


• 


•  is simply each instantiation of unobserved variables according to their 
distributions

P(X, Y) P(X |Y)

Y ⊆ V

U = u

PM(y) = Σ{u|Y(u)}P(u)



Illustrating the Layer 1 (Seeing)

• This figure illustrates what we 


saw in the previous slide in 


terms of equations.


• Think of F as a mapping of 


probabilistic events


• The grey shaded region is the 


Unobserved while white is observed



A seeing type of query 
Computation example

• This is easily computed from the joint distribution of U,X,Y

P(Y = 1 |X = 1) =
P(Y = 1,X = 1)

P(X = 1)
=

Σ{u|Y((u)=1,X(u)=1}P(u)
Σ{u|X(u)=1}P(u)



Doing (Layer 2) 
Same as Layer 1 except some variables are fixed to constants 

• A modification of the SCM gives natural valuations for quantities of this kind


• X = x is fixed while the remaining function mappings are intact :


• Def: Potential response  is the solution for Y (a subset of the endogenous 
variables V) of the set of equations  


• Formally, for a unit  from unobserved variables, nature evaluates 


• This is the same as Layer 1 except a set of variables have been fixed to a constant 

Yx
Fx

U = u Fx

Fx = {fi : Vi ∉ X} ∪ {X ← x}



Doing (Layer 2)
Taking charge & acting on the situation to bring a certain change

• Evaluation (the only difference from Layer 1 is  instead of : 


•  denotes the random variable induced by averaging the potential response  over 
all u according to 


• This procedure disconnects X from any other source of “natural” variation from the 
original function 


• This means changes is Y would be due to changes in X that occurred outside the 
modelled system in turn guaranteeing a causal effect 

Yx Y

Yx Yx(u)
P(U)

PM(y) = Σ{u|Yx(u)}P(u)



Intervention 
Computation

•  then from Bayes’ rule:


• 


• In our boat example, if we 


Intervene by setting sail = 1 


Regardless of the wind

Yx := Y |do(x)

P(Y |do(x), z) = P(Yx |zx) =
P(Yx, zx)

P(zx)
=

P(Y, z |do(x))
P(z |do(x))

F =

wind ← fwi(UT, UP)
waves ← fwa(UT ∧ wind)
sail ← 1
x ← wind ∧ waves ∧ sail



Calculating in the Autonomous Sail boat example

• Thus we could compute the probability of an outcome after intervening 


• In this case, it turned out to be calculable from unobserved factors over which 
we have a P(U) distribution 

P(x = 1 |do(sail = 1) = Σu|YX=1(u)=1P(u)

= ΣYx=1(UT,UP)=1P(UT, UP)



Imagining (Layer 3)
Alternative observations AND outcomes than those manifested in reality

• An SCM induces a family of joint distributions over counterfactual events 
 for any 


•  is read as the probability of event Y=1 happening 
in an alternative reality had event X=1 taken place conditioned on the present 
reality 


• P(alternative reality of X & Y | present reality of X & Y)

Yx, . . . , Zw Y, Z, . . . , X, W ⊆ V

P(YX=1 = 1 |X = 1,Y = 1)



Evaluating Counterfactual
An example with some particular SCM

PM(yx, . . . zw) = Σ{u|Yx(u)=y,...,Zw(u)=z}P(u)

P(YX=1 = 1 |X = 0,Y = 0) =
P(YX=1 = 1,X = 0,Y = 0)

P(X = 0,Y = 0)

=
Σ{u|Yx=1(u)=1,X(u)=0,Y(u)=0}P(u)

Σ{u|X(u)=0,Y(u)=0}P(u)



Counterfactual question for the robot example

• Given that we have observed for wind = 1 and waves = 1 sail=1 that x = 3


• What position ‘X’ would the boat be at if it were the case that wind (W) =1 
waves (A) =-1 sail (S)=1


• Limiting the equation for just X and W


• Note that the case X=1 W=1 has not been realised so it is an alternative world


• The case on which we condition has been realised X=-1 W=-1


• This type of question can be useful for the robot if it wants to learn a navigation 
policy using reinforcement learning and wishes to calculate ‘cumulative regret’

P(XW=1 = 1 |X = − 1,W = − 1)



A logical perspective
Questions that have been posed and answered by a PCM

• L1: How likely is Y given that we observe X?


• L2: How likely would Y be if one were to make it the case that X = x?


• L3: Given I have observed X and Y, how likely would Y have been if X’ had 
been true instead of X?



Symbolic Languages
Definition

• Let variables V be given and X,Y,Z  V. Each language  i=1,2,3 consists of 
Boolean combinations of inequalities between polynomials over terms  where 

 is an  term


•  terms are of the form encoding the probability that Y takes on values y


• terms additionally include probabilities of conditional expressions  
giving probability that variable Y would take on values y were X=x


•  encodes probabilities over conjunctions of conditional ( ) symbolising the joint 
that all conditional statements hold simultaneously 

⊆ Li
P(α)

P(α) Li

L1 P(Y = y)

L2 P(Yx = y)

L3 L2
P(Yx = y, . . . , Zw = z)



Examples of this syntax

• 


•  is the probability of Y taking on value 1 were X to 
take on value 1 is 3/4


•  is a statement expressing a lower bound 
on the probability of necessity and sufficiency


• Def: Pearl Causal Hierarchy (PCH) is the collection of distributions induced by 
languages  (syntax) . If  is a fully specified SCM then its PCH is 
fully specified

L1 : P(X = 1 |Y = 1) = P(X = 1)P(Y = 1)

L2 : P(YX=1 = 1) = 3/4

L3 : P(yx, y′�x′�) ≥ P(y |x) − P(y |x′ �)

L1, L2, L3 M*



Q: Is there an increasing logical expressiveness for ?L1, L2, L3
If not, then the hierarchy between these languages collapses

• Consider an example where 


• U is distributed as a fair coin flip


• We must have  for any unit u or else -probability  differs 
between  and .  is also determined by  requirement that  match 
between . This is enough to determine all  quantities.


• A ‘collapse’ would mean we can draw all possible causal conclusions merely 
from correlations

M* = ⟨U = {U}, V = {X, Y}, 𝔽, P(U)⟩

fY(x, u) = x L2 P(yx)
M M* fX L1 P(x)
M, M* L3

F = {X ← U
Y ← X



Collapse relative to M*

• Let  be the set of all possible SCMs


• Layer j of the causal hierarchy collapses to Layer ‘i’ with  relative to 
 if  implies that  for all 


• Theorem: Causal Hierarchy Theorem (CHT) almost never collapses i.e. for 
almost any SCM the layers of the hierarchy remain distinct

Ω

i < j
M* ∈ Ω M* ∼i M M* ∼j M M ∈ Ω



A fundamental way to study causal inference

• So far we have seen a semantic and logical approach to the need for SCMs


• We have also seen the presence of three layers of hierarchy which are in 
increasing order of expressivity 


• In the motivating Kalman Filter example we tried to draw relations between 
factors in the model as a graph


• Now we formalise the notion of graphs and note the differences between the 
types of graphical approaches 

A graphical perspective



Bayes Nets

• represents a set of variables and their conditional dependencies via a directed 
acyclic graph (DAG)


• ideal for taking an event that occurred and predicting the likelihood that any 
one of several possible known causes was the contributing factor


• This classic Bayes net shows conditional


 Probability relations between the variables



A graphical perspective
Why are Bayes Nets not enough?

• What type of causal knowledge would allow us to make cross-layer 
inferences i.e. for example, go from P(Y|X) to P(Y|do(x)) 


• Bayes nets although sometimes erroneously believed to encode causal 
knowledge unfortunately falls short on bridging the gap between layers 1 and 
2


• Why? Because it fails to distinguish between two mechanisms that have the 
same observational data, same conditional independence relations (both of 
which can be found from a bayes net) but react differently to interventions 
which the bayes net can’t inform us of.



Illustrating the mapping of SCMs and interventions 
Bayes net give an illusion of causality yet their test is interventions

• It is possible for different


Data generating mechanisms


To have the same observations


Data and the same Conditional


independence relations yet clearly they


Will have differing interventional 


reactions



Example of Bayes Net’s inability for L2 inference

𝔽1 =
X ← Ux

Z ← X ⊕ Uz

Y ← Z ⊕ Uy

𝔽2 =
X ← Z ⊕ Ux

Z ← Y ⊕ Uz

Y ← Uy

P1,2(V)

Same Different

Observational 
Data P(V) SCMs

Conditional 
Independenc

e relations

Interventional 
distributions

X ⊥ Y |Z P(Y |do(X = x))

𝕄 = ⟨U, V, 𝔽, P(U)⟩



Assymetry between cause and effect
A failing of L1 constraints to make L2 inferences

• Cause (X) may change the effect on a certain variable (Y)


• But that doesn’t imply that changing this effect variable (Y) will alter the 
cause variable (X)


• Figure shows that observational data is not enough to differentiate different 
causal mechanisms or make L2 inference


• For example in the Bayes net image seen before, the arrow from Rain -> 
Sprinkler indicates Rain affects the outcome of sprinkler but not the other 
way round



Short-coming of Bayes Net (BN)

• Bayes net is thus a tool for formalising L1 data P(x,y) P(x|y) and conditional 
independences Y  X | Z


• The gap between L1 and L2 is not filled by Bayes net because it can’t 
differentiate the causal effect of an intervention 


• For example in the Sprinkler Bayes net we can not find the effect of altering 
the sprinkler on the state of wetness 


• We need to go one step further to formalise causal effects P(y|do(x))

⊥



Causal Diagram (Markovian)
Constructed from an SCM 

• 1. A vertex for an endogenous variable every the SCM 


• 2. A directed edge between each vertex that appears in the function 


• Intuitively the arrow represents a master-slave relation (  means B 
listens to A)


• Functionally, the edge between A and B indicates that 


• X causes Y and both are affected by an exogenous variable 

vi

fi ∈ 𝔽

A → B

B ← f(A)



 Causal Bayesian Network (stronger than BN)
Properties for a CBN in a Markovian setting

• 1. Markovian 


• 2. Missing Link  for 


• After intervening on the Parent of a variable, the variable is insensitive to any 
other intervention in the system 


• 3. Parents do/see 


• Whether the function takes the value of its arguments by intervention or by 
observation, the same behaviour for it is observed

P(vi |pai, pa(pai)) = P(vi |pai)

P(vi |do(pai), do(x)) = P(vi |do(pai)) Vi ∈ V, Vi ∉ X

P(vi |do(x), do(pai)) = P(vi |do(x), pai)



Differences between CBN and BN

• Encodes stronger assumptions than BN like constraints 2 and 3 seen in the 
last slide


• Missing arrows in a BN indicating conditional independence 


• While in CBN missing arrow indicates lack of direct effect



A Theorem about CBNs

• Theorem: The causal Diagram induced by the SCM is a CBN for the collection 
of observational and experimental distributions induced by M


• CBN can act as a basis for causal reasoning when the SCM is not fully known 
and a collection of interventional distributions is not available.



Another Theorem about CBNs

• Theorem- Truncated Factorization Product (Markovian): Let the graphical 
model G be a CBN for the set of interventional distributions. For any  
the interventional L2 distribution  is identifiable through the 
truncated factorisation product:


• The L2 expression on the LHS is written in terms of the L1 observation RHS


• Note the factors relative to the intervened variables are removed

X ⊆ V
P(V |do(X) = x)

P(v |do(x)) = Π{i|Vi∉X}P(vi |pai) |X=x



Back door criterion (Markovian setting)
Markovian Models - those without unobserved confounders

• For any  treatment X and outcome Y, the interventional distribution


• If the set of covariates Z is constituted by all pre-treatment variables and all 
relevant sources of variations are measured then adjusting for these variables 
will lead to the causal effect

P(Y |do(x))) = ΣzP(Y |x, z)P(z)



Blessings of a Markovian Situation
A strong assumption but has nice properties

• To re-emphasize: A markovian assumption is that every node is conditionally 
independent of its non-descendants given its parents (has no bearing on 
nodes which do not descend from it)


• Then the nice properties discussed above follow namely:


• CBN is a perfect surrogate for the Causal diagram induced by the SCM


• For any  the  is identifiable through truncated factorization


• L2 quantities (causal effects) are computable from the observational data (L1 
data)

X ⊆ V P(v |do(x))



Semi-Markovian Causal Bayes Networks
Reality hits us in the form of Unobserved confounders

• All relevant factors about the phenomenon under study are not measured


• Example: Roll two dice and define events X & Y as sum and difference of 
outcomes.


• If X =2 then the outcomes have to be exactly 1 and 1. So P(Y=0 )=1


• So clearly X & Y are not independent. How about put an arrow X ->Y


• That would mean X causes Y and so this should be true: 
 which is not (reporting X=2 doesn’t change Y)P(Y |do(X = 2)) = P(Y)



Unobserved confounder

• Realize: certain dependencies among endogenous variables cannot be 
explained by other variables in the model


• Neither can they be ignored because !


• This dotted arrow is neutral with respect to the interventional invariance i.e.

X /⊥ Y

P(Y |do(X)) = P(Y)



Causal Diagram (Semi-Markovian Models)

• G is a causal diagram of an SCM if it is constructed as:


• 1. A vertex for every endogenous variable in 


• 2. An edge for for every  if  is an argument for 


• 3. A bi-directed edge  for every  if  are 
correlated or the corresponding functions  share some  as an 
argument

V

Vi, Vj ∈ V Vj fi ∈ F

Vj < − − > Vi Vi, Vj ∈ V Ui, Uj ⊂ U
fi, fj U ∈ U



Family Properties of Causal Diagrams
A familiar Bayes net property does not hold

• Each SCM induces a unique causal diagram (in contrast to Bayes net - an 
SCM to BN mapping was not 1-1)


• Family relations in Semi-Markovian models are less well-behaved than in 
Markovian Notice: The markovian property of a 

variable being conditionally independent 
from its non descendants given its 
parents doesn’t hold here. For node D


{Non-desc}  = 


  and 


Because of D <—>B <— A

∖Pad {A, F}

Pad = {B, C} D /⊥ {A, F} |{B, C}



Boundary of influence of nodes in a Graph
A property about causal graphs that is important to understand

• Think of this property as a region of influence of a node in a graph 


• This region can be limited by conditioning on relatives of a node


• An analogy: let nodes represent members of a royal family in Europe


• Let us assume they are fighting for the throne as their objective


• If a member is independent of others then he/she gets the throne 


• To condition on other nodes is similar to winning the confidence of these 
members - once conditioned on certain nodes they help you become independent 
from other ancestors. For Markovian case conditioning on parents was enough



Confounded Components
A way to determine modularity in semi-markovian models

• Like we saw in the Markovian case - to partition nodes such that we can 
claim they are conditionally independent we only needed to condition on 
Parents. In Semi-Markovian we need a new property


• C-Components: Let  be a partition over the set of variables 
 where  is a confounded component if for every pair  of nodes in  

there exists a path made up entirely of bi-directed edges 


• Looking at the image on the previous slide note that 
 form C-Components.

{C1, C2, . . . , Ck}
V Ci Vi, Vj Ci

{B, D}, {C, E}, {A}, {F}



C-Components continued

• For each endogenous variable  we need to condition on :


• 1. its parents 


• 2. Variables  in the same C-component siblings that precedes (topologically) it


• 3. Parents of the  


• Then  is shielded from other non-descendants in the graph


• A Node should win confidence of its parents and its older sibling’s parents to become 
independent of its non-descendants (easy to remember). Define this set as 

Vi

Vj

Vj

Vi

Pa+
i



Semi-Markovian Relative
Through an example

• One topological order is A<B<C<D<E<F


• 


• 


• Thus:


•

P(v) = ΠVi∈VPx(vi |pax+
i )

pa+
i = Pa1({V ∈ C(Vi) : V ≤ Vi})∖{Vi}

P(a, b, c, d, e, f ) = P(a)P(b |a)P(c |a)P(d |b, c, a)P(e |d, c, a)P( f |a)



Causal Bayesian Network (Semi-Markovian)
Properties of a CBN in a semi-Markovian setting

• Let  be the collection of all interventional distributions 


• A graphical model with directed and bidirected edges is a CBN if for every intervention :


• 1.  is semi-Markov relative to 


• 2. For every  


• 


• meaning conditioning on the set of augmented parents  renders  invariant to an 
intervention on other variables 

P* P(V |do(X = x))

P(V |do(x)) Gx̄

Vi ∈ V∖X, W ⊆ V∖(Pa+
i ∪ X ∪ {Vi})

P(vi |do(x), pax+
i , do(w)) = P(vi |do(x), pax+

i )

Pax+
i Vi



• Missing bidirected link: For every node, let us partition into two sets 
confounded and unconfounded parents  and  in 


• Then 


• This means we are relaxing the stringent do/see conditions in a Markovian 
CBN

Pac
i Pau

i Gx̄

P(vi |do(x), pac
i , do(pau

i )) = P(vi |do(x), pac
i , pau

i )



Identifiability

• Effect identifiability: the causal effect of an action is said to be identifiable 
from P and G if for every two models with the same causal diagram G the 
observational distributions being equal implies the interventional distributions 
to also be equal 


• This formalises the cross layer queries we wish to answer

P1(v) = P2(v) ⟹ P1(Y |do(x), z) = P2(Y |do(x), z))



Do -Calculus 
Building on top of d-separation for interventional distributions

• We need rules that allow us to navigate among interventional distributions and 
jump across unrealised worlds 


• These rules will be licensed by the invariances encoded in the causal graph


• Recall d-Separation 


• Rule 1 of d-separation is an extension of this but in the causal graph GX̄

X ⊥ Z |Y X ⊥ Z |Y X /⊥ Z |Y



Rule 1

• Let G be the CBN for then for any disjoint sets  \


• Rule 1:  if  in 


• This is about adding or removing observations

P* X, Y, Z, W ⊂ V*

P(y |do(x), z, w) = P(y |do(x), w) (Y ⊥ Z |X, W) GX̄



Rule 2

• Rule 2:  if  in 


•  This is exchanging an action with an observation or vice versa


• After observing Z, Y reacts to X in the same way with or without intervention


•

P(y |do(x), do(z), w) = P(y |do(x), z, w) (Y ⊥ Z |X, W) GX̄Z



• Rule 3:  if  in 


• This is about Adding or removing actions


• If there is no causal path from X to Z then an intervention on X will have no 
effect on Z

P(y |do(x), do(z), w) = P(y |do(x), w) (Y ⊥ Z |X, W) GX̄Z̄(W̄)



Back door Criterion

• 1. No node in Z should be a descendent of X


• 2. Z should block every path between X and Y that contains an arrow into X


• Then the causal effect is identifiable by 


• The most practical way of checking is by removing outgoing arrows from X 
and confirming whether Z separates X and Y

P(Y |do(x)) = ΣzP(Y |x, z)P(z)



Front door
Another identifiable criterion

• Criteria: 𝑍 is said to satisfy the front-door criterion relative to X & Y if


• 1. 𝑍 intercepts all directed paths from 𝑋 to 𝑌 .


• 2. There is no unblocked backdoor path from 𝑋 to 𝑍. 


• 3. All backdoor paths from 𝑍 to 𝑌 are blocked by 𝑋. 


• The image shows the causal graph for the age old debate


Regarding does smoking cause cancer. This happens to be ID  
•



Recent Developments 
Stochastic, conditional, and non-atomic interventions 

• It may be challenging to assess the effect of new soft intervention from non-
experimental data


• Sigma Calculus and Soft interventions introduced by Correa and Bareinboim 
2020 is a response to that



Conclusion

• We have started this interesting topic with a motivating example from probabilistic 
robotics which is very much grounded in reality


• We referred to this time and again as the theories were introduced along with 
supplemental examples from text


• This slideshow has shown three distinct perspectives : Semantic, Logical and 
Graphical to tackle causal inference 


• Hope the reader is inspired to do research in the same


• Thank you!


• Nihaar Shah (ns3413)


