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1 Introduction

The multi armed bandit problem has been studied since the 1930s (by William
Thompson) and has evolved over time with several additional components such as
bandits in an adversarial setting, bandits in a stochastic setting and contextual ban-
dits with side information. The need for better sequential decision making under
uncertainty and experimental design is of ever increasing importance in fields as di-
verse as drug trials, web advert placement and personalized medicine to economic
policy making and game playing.
The goal of this survey is to first elucidate two classic results within the Multi-Armed
bandit and Contextual bandit settings respectively namely Exp3 and Exp4 [Aue+02]
algorithms. Secondly, this survey discusses a recent advancement in applying causal
inference to the bandits problem which answers the question ” Where to intervene?”.
The approach in [LS18] uses ideas from importance sampling and applies this to a
Markovian causal graphs. There will be a focus on proof techniques that were used
to derive bounds in each algorithm and any similarities between them.

2 Definitions

Multi-Armed Bandit problem the agent makes a sequence of decisions 1, 2, .., T
and at each time t, the agent is given a set of K arms from which it must decide
which to pull. The agent receives a reward associated with the arm it pulled while
the rewards of the remaining arms are unknown.
Stochastic bandits: The agent receives a reward that is sampled from a distribu-
tion that is unknown to the agent.
Adversarial bandit environment: The rewards are not sampled from a distribu-
tion but chosen by an adversary and can depend on all previous actions of the agent.
Contextual bandits problem: There is a distribution P over (x, r1, ..., rk) where
x is context (or side information) a ∈ {1, ..., k} is one of the k arms to be pulled
and ra ∈ [0, 1] is the reward for arm a. The problem is a repeated game: on each
round, a sample (x, r1, ..., rk) is drawn from P, the context x is announced, and then
for precisely one arm ’a’ chosen by the player, its reward ra is revealed.
Simple regret: difference between the return of the optimal action and that of the
action chosen by the algorithm after T rounds.

3 Preliminaries

3.1 Importance weighted estimators

A crucial part of the adversarial bandits setting is a mechanism to estimate the reward
of unplayed arms i Xi. We can borrow ideas from importance sampling where the
goal is to evaluate E[f(x)] =

∫
f(x)p(x)dx and x(j) ∼ p(x) however we can’t sample

from p(x) but can just evaluate it for a given x. So we use a proposal distribution
q(x) from which we can sample to draw samples and then re-weight them. Samples
for which q(x) > p(x) will be over-represented while those for which q(x) < p(x) will

be under-represented. So the weight wj = p(x(j)

q(xj) would compensate for this.[Bis06]
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Thus,

E[f(x)] =

∫
f(x)

p(x)

q(x)
q(x)

≈ 1

J
ΣJj=1

p(x(j)

q(x(j))
f(x(j))

(1)

Inverse Propensity Weighting (IPW) In a similar vein, IPW is often used in
causal inference when it is not possible to conduct a controlled experiment but there
is observational data that can be used to estimate a potential outcome (counterfac-
tual). This is valid if there are known to be no common causes or confounders between

treatment and effect variables. The IPW formula used is: µ̂a,n = 1
nΣni=1

Yi1[Ai=a]
p̂n(Ai=a|Xi)

[RRZ94] which has parallels to the Importance weighted formula above: p̂ & q,

Σni=1
1[Ai=a]

n & p.

3.2 Exp3 algorithm

Exponential-weight algorithm for exploration and exploitation (Exp3) is an algorithm
for the adversarial bandits setting. The main idea is to maintain a list of weights
wi(t) for each action i in round t and using these weights to calculate a distribution

Pt,i =
exp ηX̂t−1,i

Σkj=1 exp(ηX̂t−1,j)
and sample an action Ait to take next. Then it estimates

the rewards X̂t (using IPW) for all the actions based on the observed reward Xt.
This estimated reward is used to increase and decrease the weights when the payoff

is good or bad according to the update rule wt+1,i = wt,ie
−η

X̂t,i
pt,i . η ∈ [0, 1] in Pt,i

tunes the trade-off between exploration of new actions (η = 0 gives uniform chance
to all actions) and exploiting actions with known high reward η = 1.
Estimating Rewards The intuitive reason to estimate rewards using IPW is to
compensate for a potentially small probability of getting the observed reward. More
formally, it ensures that the conditional expectation of the “estimated reward” is
the actual reward. Let Pti = P (At = i|A1, X1, .., At−1, Xt−1) i.e the probability of
choosing the ith action at the t-th round conditioned on all previous actions and
rewards (A,X). Then the estimated reward by the end of round t, where X̂ti is given
by:

X̂ti =
1[At = i]

Pti
Xt (2)

To check if X̂ti (a random variable because it is dependent on At, Pt, Xt is a good
estimate of the actual xti we can calculate the mean and variance of this reward
estimate. The conditional expectation of the estimate is:

E[X̂ti|A1, X1, .., At−1, Xt−1] = Et[X̂ti] = Et[
Ati
Pti

xti] =
xti
Pti

Et[Ati] = xti

This is by noting that Et[Ati] = Pti and so we find that X̂ti is an unbiased es-
timator of xti the true reward. The conditional variance on the other hand is :
Vt[X̂t,i] = x2

ti(
1−Pti
Pt,i

) which can be quite large especially if Pt,i is small. This is

indeed problematic sometimes and should be noted. The regret for n rounds and k
arms is Rn(x) ≤ 2

√
nk log(k) and while the proof isn’t in the scope of this survey, the

important idea used in it is the inequalities ex ≤ 1 + x+ x2 for x ≤ 1 and 1 + x ≤ ex
from Taylor’s expansion.[LS18]

4 Exp4 algorithm

So far in the MAB problem we have only considered being informed about which
actions to take by the observed rewards. In most real-world settings it is common to
have side information that can be supplemented to inform the choice of actions for
example a news recommendation engine would have access to the location, time, per-
haps age and gender of the user. Naively, one could use a K-armed bandit algorithm
on each context independently but that would be ignoring any relationships between
contexts where learning one could help in inferring others. So we should consider
grouping contexts in some way and assign a bandit to each group. The contextual
bandit problem in the adversarial setting differs from the Exp3 setting in that we get
a context vector. Instead of scoring actions, the learner must score experts. ”Expert”
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refers to a learner for each policy in the hypothesis space of policies. Advice vector
ζNt is the Nth expert’s advice vector containing distribution over K arms indicating
the recommended probability of playing each arm at time t. The agent’s goal is to
combine the advice of the experts in such a way that its total reward is close to that
of the best expert (in contrast to just the best single action in Exp3). The algorithm
is reproduced in Algorithm 1 from [LS18]. Notably, weight update step in line 11
considers the rewards obtained by following expert advice i to proportionally update
that expert’s weights. The memory cost O(N) for N experts and time complexity is
O(N +K) per round. Regret is bounded by O(

√
TK logN).

Algorithm 1 Exp 4 algorithm

1: Require γ ∈ (0, 1]. Set wt,i = 1 for i = 1, .., N
2: for t=1,..,T do
3: Receive advice {ζ1t , ζ2t , ., ., ζNt }
4: for j = 1,..,K do

pt,j = (1− γ)ΣNi=1

wt,iζ
i
t,j

ΣNi=1wt,i
+
γ

K

5: end for
6: Draw action at according to pt(which was just populated) and receive reward
rat

7: for j =1,...,K do
8: Calculate the unbiased estimator of rt

ˆrt,j =
rt,j
pt,j

I[j = at]

9: end for
10: for i = 1,..,N do
11: Calculate the estimated expected reward and update weight

ŷt,i = ζit r̂t

wt+1,i = wte
γŷt,i/K

12: end for
13: end for

[LS18]

5 Causal Bandits: Where to intervene?

In the contextual bandits setting we encountered the case where in side information
may be related which is why it is beneficial to compete different policies that can view
all of this side information. Now we consider the case where side information comes
from a Causal graph representing relations between the variables in the context. For
instance going back to the news recommendation engine, if we knew that age (X1)
and gender (X2) directly affects articles of a certain type (say health related (Y ))
then it can be represented as in fig 1a.
We first consider the parallel bandits algorithm that deals with graphs that look like
fig 1a and then more general graphs. Finally there will be a discussion on similarities
to previous algorithms to the causal case.

5.0.1 Problem Setup

In each round, the learner can either purely observe by selecting do() or set the value
of a single variable. The remaining variables are simultaneously set by independent
biased biased coin flips. Formally, when not intervened upon Xi ∼Bernoulli(qi) where
q = (q1, ..., qN ) ∈ [0, 1]N so that qi = P{Xi = 1}. This approach uses importance
sampling ideas and re-weights unobserved actions which is similar to the idea used
in EXP3 and EXP4 that we have seen above. This approach also considers rather
simple graphs where the treatment and observed variables are direct causes (i.e. share
a parent-child relationship). To start with consider the causal graph in fig 1a with
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(a) Parallel graph (b) common-cause

the following definitions:

[X1, ., ., Xi, ., ., XN ]τ ∈ {0, 1}N for round t = τ

At any given round t = τ the learner can only intervene on at most a single random
variable Xγ i.e. set Xγ = j, j ∈ {0, 1} . The remaining Xi, i ∈ {1, 2, .., N} \ γ are
drawn from {0, 1} according to a Bernoulli parametrized by a random vector q:

qτ = [q1, ., ., qi, ., .qN ]τ ∈ [0, 1]

q is not known to the learner and so the algorithm estimates this from the initial
period of observation where no interventions are done. So all we have access to is an
estimate of q namely q̂.
Lastly the rewards Yt are determined by a fixed and unknown mapping r : {0, 1}N →
[0, 1].

5.0.2 Algorithm for Parallel graphs

Alg 2 is reproduced from [LLR16]. After observing for the first T/2 rounds, the

Algorithm 2 Parallel Bandits

1: Input: Total rounds T and N
2: for t ∈ T/2 do
3: Perform empty intervention do()
4: Observe Xt and Yt
5: end for
6: for a = do(Xi = x) ∈ A do

7: Count times Xi = x seen: Ta = Σ
T/2
t=11[Xt,i = x]

8: Estimate reward: µ̂a = 1
Ta

Σ
T/2
t=11[Xt,i = x]Yt

9: Estimate probabilities p̂a = 2Ta
T , q̂i = p̂do(Xi=1)

10: end for
11: Compute m̂ = m(q̂) and A = {a ∈ A : p̂ ≤ 1

m̂}
12: Let TA := T

2|A| be the times to sample each a ∈ A
13: for a = do(Xi = x) ∈ A do
14: for t ∈ 1, .., TA do
15: Intervene with a and observe Yt
16: end for
17: Re-estimate µ̂ = 1

TA
ΣTAt=1Yt

18: end for
19: Return: estimated optimal â∗ ∈ arg maxa∈A µ̂

learner has access to (X,Y) where X ∈ {0, 1}T/2×N and Y ∈ RT/2. Consequently
the learner has the following distribution P (Y|X). This is shown in lines 1-4 of
algorithm 2. In our particular causal graph in fig 1a due to the direct causal relation
between Xi and Y we can conclude that intervening on do(Xi = j) has the same
effect on Y as observing that Xi = j i.e. P (Y |do(Xi = j) = P (Y |Xi = j). Effectively
we have the interventional distribution.
Now the set of all possible actions consists of setting each of the N variables Xi to
0or1 therefore |A| = 2N−1. The algorithm iterates through each of these possible
interventions and counts how many times it was observed so far. Say X7 = 0 was
observed 42 times out of T/2 = 100 rounds then it estimates the probability of this
intervention P (X7 = 0) = 42/100 and its complement P (X7 = 1) = 1 − 0.42 = 0.58
so q7 = 0.58. This is done in lines 7 and 9. Line 8 estimates the reward distribution
based on the action-reward pairs observed.
The observations will be skewed towards those Xis for which P (Xi = j) is large
because these would be visible more frequently. To compensate for those actions for
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which P (Xi = j) is small, the remaining T/2 rounds are split to estimate the rewards
for these infrequent actions.
We can treat the m(q) as a function that outputs a parameter that favours low
probability actions due to this expression Iτ = {i : min{qi, 1 − qi} < 1

τ } yet doesn’t
favor these actions too much if given a choice to select fewer such actions as seen by
- m(q) = min{τ : |Iτ ≤ τ}. In a sense this is a tradeoff between exploration and
exploitation as done in line 11. This is reminsicent of the γ parameter in Exp3 and
η in Exp4 because they serve a similar role in the trade-off.
Finally the algorithm creates a subset of such actions that fit the criteria of low
enough probability (line 11) and evenly splits the remaining T/2 rounds to intervene
on them (line 12). The reward distribution is updated for these selected actions only
(line 17). Finally the action that yielded the best approximate reward is considered
optimal (line 19).

Theorem: Algorithm 1 satisfies RT ∈ O(
√

m(q)
T log( NTm(q) ))

Proof: This proof is from the supplementary material of [LLR16] and here shall be
reproduced in parts that are important. The proof requires some lemmas. Lemma
1: Let i ∈ {1, ..., N} and δ > 0 then:

P{|q̂i − qi| ≥
√

6qi
T

log
2

δ
} ≤ δ (3)

Proof: q̂i = 2
T Σ

T/2
t=1Xt,i where Xt,i ∼ Bernoulli(qi) so applying Chernoff’s bound:

P{|q̂i − qi| ≥ ε} ≤ 2e
−Tε26qi

Where we can solve for ε after setting δ = 2e
−Tε2
6qi

Lemma 2: Let X1, X2, ... be a sequence of random variables with Xi ∈ [0, 1] and
E[Xi] = p and δ ∈ [0, 1] then:

P{∃t ≥ n0 : |1
t
Σts=1Xs − p| ≥

√
2

n0
log

2

δ
} ≤ 4δ (4)

Proof: Hoeffding’s bound and union bound are useful:

P{∃t ≥ n0 : |1
t
Σts=1Xs − p| ≥

√
2

n0
log

2

δ
} ≤ Σ∞t=n0

P{|1
t
Σts=1Xs − p| ≥

√
2

n0
log

2

δ
}

≤ 2Σ∞t=n0
e

−t
n0

log 2
δ ≤ 4δ

(5)

Lemma 3 Let δ ∈ (0, 1) and assume T ≥ 48m log 2N
δ Then

P{2m(q)/3 ≤ m(q̂)} ≥ 1− δ (6)

Proof: Let F be the event that there exists i such that 1 ≤ i ≤ N for which:

|q̂i − qi| ≤
√

6qi
T

log
2N

δ
(7)

By the Union Bound and Lemma 3 P{F} ≤ δ. When F does not hold we have
2m(q)/3 ≤ m(q̂) ≤ 2m(q). From the definition of m(q) and our assumption on q for
i > m we have qi ≥ qm ≥ 1/m and so by Lemma 3:

3

4
≥ 1

2
+

√
3

T
log

2N

δ
≥ qi +

√
6qi
T

log
2N

δ
≥ q̂i

≥ qi −
√

6qi
T

log
2N

δ
≥ qi −

√
qi

8m
≥ 1

2m

(8)

By pigeonhole principle then m(q̂) ≤ 2m. For the other direction, since failure event
F doesn’t hold, we have for i ≤ m:

q̂i ≤ qi +

√
6qi
T

log
2N

δ
≤ 1

m
(1 +

√
1

8
) ≤ 3

2m
(9)

Therefore, m(q̂) ≥ 2m(q)/3
Proof of Theorem 1 Let δ = m = m(q)/N . Then by lemma 6:

P{2m/3 ≤ m(q̂) ≤ 2m} ≥ 1− δ (10)
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Recalling that A = {a ∈ A : p̂a ≤ 1/m(q̂)} Then for a ∈ A the algorithm estimates
µa from T/(2m(q̂)) ≥ T/(4m) samples. Therefore by Hoeffding’s inequality and
union bound:

P{∃a ∈ A : |µa − µ̂a| ≥
√

8m

T
log

2N

δ
} ≤ δ (11)

For arms not in a we have p̂a ≥ 1/m(q̂) ≥ 1/(2m). Therefore if a = do(Xi = j) then

p̂a =
2

T
Σ
T/2
t=11{Xi = j} ≥ 1

2m
(12)

Σ
T/2
t=11{Xt,i = j} ≥ T/(4m) Therefore from lemma 4 we have:

P (Σ
T/2
t=11{Xi = j} ≥ T

4m
∧ |µ̂a − µa| ≥

√
8m

T
log

2N

δ
)

So with probability at least 1− 6δ |µ̂a − µa| ≤
√

8m
T log 2N

δ = ε

If this occurs then µa∗T ≥ µ̂a∗T − ε ≥ µa∗ − 2ε

Therefore µ ∗ −E[µ̂â∗T ] ≤ 6δ + ε ≤ 6m
T +

√
32m
T log NT

m . QED

5.1 General graphs

The more general problem is where the graph is known, but arbitrary. In general,
unlike in the parallel graph case it can’t be claimed P (Y |Xi = j) = P (Y |do(Xi =
j)) since causation is not correlation. However, if all the variables are observable,
any causal distribution P (X1, .., XN |do(Xi = j)) can be expressed in terms of the
observational distributions via the truncated factorization formula [Pea10]:

P (X1, .., XN |do(Xi = j)) = Πk 6=iP (Xk|PaXk)δ(Xi − j)

The naive way of applying parallel bandits is to apply this truncated factorization
to write expression P (Y |a) for each action a in terms of the observational quantities
and playing those actions for which the observational estimates were poor. However
this is not optimal because we ignored the information we could have learned about
the reward for intervening on one variable from rounds in which we act on other
variables. This loss of related information is reminiscent of the reasons for using
expert advice in the contextual setting. Here, a simple example to illustrate this lost
information is a causal chain where each child is deterministically determined by its
parent’s value. Then performing a single action do(X1 = 1) can inform us of the
reward from all interventions do(Xi = 1) for i = 2, 3..K. Also consider the graph
in fig 1b where we plan to intervene do(X2 = 1) so the incoming arrows into X2

get deleted and we can identify this causal effect from the expression P (Y |do(X2 =
j)) = ΣX1

P (X1, X2 = j, Y ) = ΣX1
P (X1)P (Y |X1, X2 = j)) = P (X1 = 0)P (Y |X1 =

0, X2 = j) + P (X1 = 1)P (Y |X1 = 1, X2 = j). If we deterministically set X2 = X1 =
j = 1 then clearly we won’t observe P (Y |X1 = 0, X2 = 1) and consequently the
estimate for this intervention would also be poor. So, we need an estimator for each
action that incorporates information obtained from every other action.
If we assume that conditional interventional distributions P (PaY |a) (but not P (Y |a).
Let η be the distribution on available interventions a ∈ A so ηa ≥ 0 and Σaηa = 1.
Define Q = ΣaηaP (PaY |a) to be the mixture distribution over the interventions with
respect to η. Then the algorithm samples T actions from η and uses them to estimate
the returns µa simultaneously via a truncated importance weighted estimator.

6 Discussion

The importance weight estimator in the general graphs causal bandit algorithm aims
to use a subset of actions distributed as η that can be intervened on to estimate all

of the actions a ∈ A. This is done by using Ra(X) = P{PaY (X)|a}
Q{PaY (X)} . This idea is

similar to the IPW reward estimation method in Exp4 r̂t,j =
rt,j
pt,j

I(j = at). There

is also a parallel to be drawn between the η in Exp3, γ parameter in Exp4 and the
m(q) parameter in Causal bandits setting - both are used to trade-off exploration
and exploitation albeit in different settings. In conclusion, this survey has discussed
three settings and 4 algorithms of the bandit problem: Exp3 in the Multi-Armed
case, Exp4 in the contextual case, Parallel-bandits and General bandits in the Causal
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case. At appropriate times in the discussion certain similarities were pointed out.
Notably there is a gap of 14 years between the first two and latter two algorithms,
and still similar ideas are continued. There are some other papers that look at the
do-calculus approach to selecting which variables of the causal graph (including a
semi-Markovian graph) to intervene on after finding certain sets of equivalent arms
in the graph. Those approaches and other future work in the intersection of causality
and bandits is promising and should be explored.
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