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1. Introduction
Anomalies represent deviations from an underlying pro-
cess or distribution, and therefore, often reveal important
information about novel events. Anomaly detection is an
essential and difficult problem that has applications in a
diverse set of industries and research areas such as fraud de-
tection, network intrusion, industrial operations, healthcare,
and social networks (Chalapathy & Chawla, 2019; Chandola
et al., 2009).

Supervised methods for highly imbalanced data is often not
possible, since anomalies by their definition are scarce. In
cases where only ”normal” data is available, we must rely
on unsupervised methods of anomaly detection. There are
many existing unsupervised methods for anomaly detection
including One-Class SVMs (Schölkopf et al., 2000), density
based methods (Breunig et al., 2000; Knorr et al., 2000;
Çelik et al., 2011), Isolation trees (Liu et al., 2008), vari-
ational autoencoders (An & Cho, 2015; Zimmerer et al.,
2018; Lu & Xu, 2018; Xu et al., 2018), and generative ad-
versarial networks (Yang et al., 2020; Zenati et al., 2018b;a).

2. Related Work
We focus on the use of variational inference, specifically
variational autoencoders (VAEs) as a method of unsuper-
vised anomaly detection. Flexibility of encoder/decoder
architectures , stochastic elements, and easy training make
VAE appealing for anomaly detection. VAEs have been used
to detect outliers in tabular network data (An & Cho, 2015;
Nguyen et al., 2019), image data (Zimmerer et al., 2018; An
& Cho, 2015), and multi-modal data (Park et al., 2018).

Recently, there have been promising improvements of varia-
tional inference by applying non-linear invertible transfor-
mations, Normalizing Flows (NF), to samples from the prior
to form more flexible, realistic, and multimodal posterior
distributions (Rezende & Mohamed, 2015; Papamakarios
et al., 2017; Kobyzev et al., 2019).
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However, applications of NF in anomaly detection to all
types of data, but particularly tabular data has been lim-
ited. Ryzhikov et al. (2019) apply normalizing flows to
supervised anomaly detection with novel loss functions for
highly imbalanced data. Schmidt & Simic (2019) use recent
advances in normalizing flows (Grathwohl et al., 2018) to
detect anomalies from synthetic data and industrial time
series data.

In this paper, we explore how normalizing flows can im-
prove performance of variational autencoders for anomaly
detection on tabular data.

3. Preliminaries
3.1. Variational Autoencoders

VAEs, like most generative models, assume that data sam-
ples are generated from an unobserved latent distribution.
Formally, given i.i.d. data samples xi ∈ X and an unob-
served latent variable z, we assume zi is drawn from some
prior distribution pθ (z). Subsequently, xi is generated from
a conditional distribution pθ (x|z). Since these probability
distributions are unknown, so are their parameters, θ.

Due to the lack of assumptions placed on these families of
probability distributions, the marginal likelihood is often
intractable. To circumvent the intractability of the estimate
of pθ (z|x), VAEs use a neural network as an approximation.
This approximation, denoted qφ (z|x), is called the encoder.
Similarly, to map z to a distribution over X, the probabilistic
decoder is defined as pθ (x|z). (Kingma & Welling, 2013).

Objective The VAE objective is derived from the Kullback-
Leibler (KL) divergence between the approximation
qφ (z|x) to the actual posterior pθ (z|x). We can expand
the objective for one observation xi

KL (qφ (z|xi) ‖ pθ (z|xi)) = log pθ (xi) +
KL (qφ (z|xi) ‖ pθ (z))
− Ez∼qφ(z|xi) [log pθ (xi|z)]

Since KL (qφ (z|xi) ‖ pθ (z|xi)) ≥ 0, we have an expres-
sion for the lower bound on log pθ (xi) also known as the
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evidence lower bound (ELBO):

log pθ (xi) ≥ −KL (qφ (z|xi) ‖ pθ (z)) +
Ez∼qφ(z|xi) [log pθ (xi|z)]

= L(θ, φ,xi)

Maximizing the ELBO is equivalent to the original objective
since log pθ (x) is constant with respect to qφ (z). Therefore,
the parameters of the VAE encoder and decoder are found
by solving

arg min
θ,φ

−Ez∼qφ(z|xi) [log pθ (xi|z)]+KL (qφ (z|xi) ‖ pθ (z))

Reparameterization In order to differentiate the objective
and backpropogate with respect to φ, reparameterization of
qφ (z|x) is necessary. Instead of drawing zi from qφ (z|xi),
an independent random variable εi is drawn from p(ε) and
zi is a deterministic transformation of εi:

zi = g(εi, φ,xi)

In our experiments, we assume qφ (z|x) = N (µ, σ2I), so
the reparameterization is simply

zi = µi + σ � εi, where εi ∼ N (0, I)

Objective Variations and KL-Annealing Research has
shown that variations on the objective that constrain the
regularization term, KL (qφ (z|x) ‖ pθ (z|x)), lead to better
disentangled latent factors (Higgins et al., 2017; Burgess
et al., 2018). Additionally, techniques using warm up or
annealing methods to change the influence of the regulariza-
tion term have been shown to improve reconstruction ability
and avoid KL collapse (Bowman et al., 2015; Burgess et al.,
2018; Fu et al., 2019). We implement two KL annealing
schemes for our experiments. Fu et al. (2019) use a cyclical
KL annealing schedule of the with an objective formulation
as seen in equation 1. Burgess et al. (2018) use a mono-
tonically increasing schedule for their parameter C, which
controls the effective encoding capacity of the bottleneck
presented in equation 2.

L(θ, φ,x, β) = Ez∼qφ(z|x) [log pθ (x|z)]− (1)

β KL (qφ (z|x) ‖ pθ (z))
L(θ, φ,x, C) = Ez∼qφ(z|x) [log pθ (x|z)]− (2)

γ|KL (qφ (z|x) ‖ pθ (z))− C|

3.2. Normalizing Flows

Variational inference and therefore Variational Autoen-
coders have two primary challenges - both observable from
the ELBO objective function discussed previously. Firstly,
the efficient computation of ∇φEz∼qφ(z|xi) [log pθ (xi|z)]

and secondly choosing the richest yet feasible approximate
posterior distribution q(.). Typically VAEs assume an iid
Gaussian approximate posterior qφ(z|x) or other such mean
field approximations. Consequently VAEs have limited
flexibility to model the data if the true posterior pθ(z|x)
isn’t coming from some such family of distributions. Nor-
malizing flows are a means to remedy this inflexibility by
allowing transformations of the base Gaussian distribution
via learned parameters. By repeatedly applying a smooth,
invertible mapping f : Rd → Rd with inverse f−1 = g
we can transform a random variable z ∼ q(z) into the re-
sulting random variable z′ = f(z) which has a distribution
(Rezende & Mohamed, 2015)

q(z′) = q(z)|det ∂f
−1

∂z′
| = q(z)|det ∂f

∂z
|−1

Combining a sequence of such transformations zK =
fKo...of1(z0) we can find the log of the resulting distri-
bution as:

ln qK(zK) = ln q0(z0)− Σk|det ∂fK
∂zk−1

| (3)

These transformations’ parameters are specified by neural
networks. To make Normalizing flows feasible it is crucial
to have an efficient means to evaluate the log-determinant
of the Jacobian in the equation above. Typically computing
a Jacobian of such transformations via a neural network has
a complexity O(LD3) where L is the number of layers and
D the dimension of the hidden layer. While choosing the
NF it is thus imperative to keep in mind how to reduce this
cost.

Planar flow is a particular transformation of z-space as
follows where h(.) is an element wise smooth non-linearity:

f(z) = z+u×h(wT z+b) with u,w ∈ Rd and b ∈ R (4)

Let ψ(z) = h(wT z + b) in the equation above, then
the following determinant is calculable due to the matrix-
determinant lemma.

|∂f
∂z
| = |1 + uTψ(z)| (5)

Critically, for this mapping calculating the log-det of the
Jacobian due to the above lemma is achievable in O(D).
This family of transformations is what we experiment with
on our data. Also note that each planar flow is effectively
modeling a single Multi-Layer Perceptron (MLP) type of
transformation without the ability to have any information
sharing across flows. This has its limitations of expressivity
which we improved via another following flow.

3.3. Autoregression

To better scale flows to higher dimensions, we consider and
use autoregressive autoencoders which introduce complex
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dependencies between the dimensions of the transformation.
An autoregressive function has the following form (i being
the dimension of z):

z
′

i = f(z1:i)

Such functions do have a tractable jacobian-determinant be-
cause the Jacobian matrix J = ∂z′

∂z will be lower triangular
and so det J = ΠD

i=1Jii

Autoregressive transformation As discussed, we can con-
nect a latent dimension zi to all its lower dimensions z1:i−1
for example let the base distribution Q(z0) be z0 ∼ N(0, I)
and its transformation be z′0 = µ0 + σ0 � z0. So the trans-
formation is z′ = f(z). The other dimensions are then:

z′i = µi(z′1:i−1) + σi(z′1:i−1).zi (6)

The problem with this equation is computational complexity.
The i-th dimension relies sequentially on i-1 dimensions all
being transformed which isO(D×k) for D dimensions and
k transformations. To improve on the complexity, consider
the inverse of the equation (not fully derived here):

z0 = z′0 − µ0

σ0
(7)

zi = z′i − µ(z′1:i)
σ(z′1:i−1) (8)

Notice the that µi(.) has changed to µ(.). Due to the inver-
sion z′ = f(z) has become z = f(z′) and it the inverse
zi now only depends on z′ which in this case is the value
before the transformation and so can be parallelized. Fur-
thermore, the Jacobian determinant is lower triangular so
we only need to compute the derivatives of the diagonal of
dz
dz′ which is tractable.

3.4. Inverse Autoregressive Flows

Equation 8 contains µ(.) and σ(.) which can be encoded by
a neural network in addition to another parameter h which
serves as an additional input to each subsequent step in the
flow. (Kingma et al., 2016) So the autoregressive function
is:

[µt, σt]← autoregressive[t](zt,h; θ) (9)

Thus all the ingredients to compute distribution Q(zK) for
performing variational inference with flows are available.
The IAF equivalent for equation 3 sometimes also referred
to as Variational Free Energy is:

Ez∼Q[logQ(z0)− ΣKk=1 log |det ∂zt
∂zt−1

| − logP (x, zK)]
(10)

Where we have defined zt as a function of zt−1 in equation
8.

Algorithm 1 Anomaly score generation

Input: encoder qφ (z|x), decoder pθ (x|z), test data X
for xi ∈ X do
µi, σ

2
i = qφ (z|xi)

Draw 100 samples zi,k ∼ N (µi, σ2
i )

A(xi) = −
∑100
k=1 pθ (xi|zi,k)

end for
Rank xi descending in A(xi)
Classify top n as anomalies

4. Methodology
We examine three types of models: a base VAE, VAE with
planar flows, and VAE with IAR flows. For each of the
experiments, we keep the architecture and training proce-
dure in the VAE constant while changing the presence of
normalizing flows.

We define our anomaly score A(x) of an observation x to
be the expected negative log likelihood:

A(x) = −Ez∼qφ(z|x) [log pθ (x|z)]

This is proportional to the previously introduced concept
of reconstruction probability (An & Cho, 2015). A(x) will
be high for samples with low reconstruction error (or like-
lihood). To determine anomalies, a threshold is often used
as a cutoff for the value of A(x). Since we know the distri-
bution of classes in our data, we rank samples by A(x) and
classify the top X% as anomalies.

To estimate A(x) we perform the steps in algorithm 1.

5. Data
We perform experiments on the 10% KDDCUP dataset
downloaded from sklearn’s api (Dua & Graff, 2017). The
data, collected by DARPA, is composed of network connec-
tion statistics designed to help foster research into classify-
ing network connections into normal and various intrusion
types. As in other anomaly experiments (Yang et al., 2020),
we use the intrusive classes as our ”normal” training sam-
ples and try to distinguish the non-attack connections at test
time. Non-attack connections make up 20% of the dataset,
so we rank our predictions by the anomaly score A(x) and
classify the top 20% as anomalies. We use 80% of the data
for training and 20% for testing.

6. Experiments
We trained each model type five times with different random
initializations. We measured performance using F1 score
on the held out test data as shown in Table 1.

After exploring many different architectures and training
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parameters, We noticed that there were negligible changes
with any amount of flows. Although our baseline VAE re-
sults are rather competitive to experiments in work by Yang
et al. (2020) across different anomaly detection methods,
we are surprised at the lack of improvement with normal-
izing flows and suspect there may be some flaws in the
implementation.

We generated some synthetic circular 2D data (Figure 1)
to diagnose issues in our implementation. We trained one
type of each of the three different models on the synthetic
data and plotted A(x) in the data space (Figures 2, 3, 4) to
visualize the underlying learned distribution.

We see that the base VAE and is unable to correctly capture
the normal distribution of the circle. Using 20 layers of
planar flows we are able to produce a distribution somewhat
resembling the synthetic data, however, the results were sen-
sitive to training and architecture parameters. We get even
better results with IAF at 20 flow layers, almost resembling
the true distribution.

Table 1. Performance (F1) of various models on hold out test set
of KDDCUP dataset

MODEL FLOWS MEAN F1 STDEV F1

BASE VAE N/A 0.938 0.0008
PLANAR VAE 5 0.936 0.0012
PLANAR VAE 50 0.937 0.0002
IAF VAE 5 0.936 0.0007
IAF VAE 50 0.911 0.0121

Figure 1. Synthetic data

7. Discussion Conclusion
While our results with our plain VAE are promising and
competitive with other GAN based approaches, the addition
of normalizing flows does not improve performance in our
experiments. Aside from some possible implementation
challenges, we do have some grounded theories that may
explain some of the shortcomings of normalizing flows.

Figure 2. VAE: Predicted A(x)

The lack of improvement with planar flows may be due to
their effectiveness in only relatively low-dimensional space
(Kingma et al., 2016). We see in our visual exploration that
planar flows does help model the latent distribution, but the
results are sensitive to many of our parameters and was only
partially successful with 20 stacked transformations in two
dimensions.

While it was easy to explore different parameter settings
in the two dimensional case, we lacked the time and com-
putational resources to do extensive experiments on the
KDD dataset. We hope and believe that there exist more
appropriate latent dimension sizes and flow dimensions that
will show improvements when using inverse autoregressive
flows.

8. Project Notes
The code for the experiments is located here: https://
github.com/Nihaar1996/AnomalyDetection.

We originally proposed a different subject for our project
and did some initial exploration here: https://github.
com/Nihaar1996/MetaClustering . We decided
to change directions later in the semester.
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