
EMG-Based Gesture Recognition and
Character Prediction at Meta

Nihaar Shah

Project Overview

This project focused on developing and optimizing machine learning models for
interpreting electromyography (EMG) and inertial measurement unit (IMU) signals to
enable intuitive human-computer interaction. The work involved training deep
learning models to categorize gestures and predict handwritten characters from
biosignal data, with significant emphasis on improving training infrastructure
efficiency and data pipeline flexibility.

Background

Electromyography (EMG) measures electrical activity produced by skeletal muscles,
providing rich signals that can be decoded to understand user intent and motor
actions. Combined with IMU sensors (accelerometers and gyroscopes), these
biosignals enable the development of next-generation input devices for augmented
reality, virtual reality, and assistive technologies.

The challenge lies in processing high-dimensional, noisy time-series data in real-time
while maintaining accuracy across diverse users and contexts. This requires
sophisticated machine learning models trained on large-scale datasets with efficient
infrastructure to support rapid iteration and experimentation.



Technical Contributions

1. Model Development for Gesture Recognition and Character
Prediction

Developed and trained deep learning models to perform two key tasks:

Gesture Categorization: Classification of discrete hand gestures and movements from
EMG/IMU signal streams, enabling recognition of user actions such as pinching,
swiping, pointing, and other interaction primitives.

Handwritten Character Prediction: Decoding continuous EMG and IMU signals to
predict handwritten characters as users “write” in the air or on surfaces, enabling text
input without physical keyboards.

The models leveraged temporal convolutional networks and recurrent architectures to
capture the sequential dependencies in biosignal data, with careful attention to
handling variable-length sequences and multi-modal sensor fusion.

2. Distributed Training Efficiency Optimization

Significantly improved the efficiency of distributed model training through systematic
performance analysis and optimization:

Perfetto Trace Analysis: Utilized Perfetto, a production-grade tracing framework, to
profile distributed training workflows and identify performance bottlenecks. This
involved:

Capturing detailed traces of GPU utilization, data loading, communication
overhead, and computation time

Analyzing timeline visualizations to detect idle GPU time, synchronization
barriers, and inefficient data transfer patterns

Quantifying the impact of various bottlenecks on overall training throughput

Dataloader Optimizations: Implemented targeted improvements to the data loading
pipeline based on trace analysis findings:

Optimized prefetching strategies to ensure GPUs remain saturated with data



Tuned worker processes and batch preparation to minimize CPU-GPU transfer
latency

Reduced data loading overhead through efficient caching and preprocessing
strategies

Improved multi-worker coordination to eliminate stalls and maximize parallelism

These optimizations resulted in measurable improvements in training throughput,
reducing time-to-convergence and enabling faster experimentation cycles for
researchers.

3. Data Pipeline Architecture and Researcher Flexibility

Redesigned core components of the data pipeline to improve both efficiency and
usability for research teams:

Custom Collate Functions: Designed flexible collate functions that handle complex
data batching requirements:

Masking Support: Implemented sophisticated masking mechanisms to handle
variable-length sequences, missing data, and attention-based architectures. This
enabled models to process sequences of different lengths within the same batch
without padding overhead.

Label Filtering: Created configurable filtering logic to selectively include or
exclude specific labels, gestures, or signal segments based on experimental
requirements. This allowed researchers to quickly test hypotheses on subsets of
data without modifying upstream data generation.

Signal Filtering: Developed signal-level filtering capabilities to apply frequency-
domain filters, artifact removal, or feature extraction on-the-fly during training,
reducing preprocessing overhead and storage requirements.

Researcher Flexibility: The modular design of collate functions enabled researchers
to:

Rapidly prototype new training configurations without modifying core data
loading code

Experiment with different masking strategies for self-supervised learning



Test model robustness by selectively filtering challenging samples or signal
conditions

Compose multiple filtering and transformation operations declaratively

This architectural improvement accelerated the research workflow by reducing the
friction between experimental ideas and implementation.

Technical Stack

Deep Learning Frameworks: PyTorch for model development and training

Distributed Training: Multi-GPU and multi-node training with efficient data
parallelism

Performance Profiling: Perfetto for distributed system tracing and bottleneck
analysis

Signal Processing: Time-series analysis, filtering, and feature extraction for
EMG/IMU data

Data Pipeline: Custom PyTorch DataLoader implementations with advanced
collation logic

Impact

The work contributed to advancing Meta’s capabilities in biosignal-based interaction
technologies:

1. Training Efficiency: Reduced training time through systematic optimization,
enabling faster iteration and experimentation

2. Model Performance: Improved gesture recognition and character prediction
accuracy through better data handling and model architectures

3. Research Velocity: Enhanced researcher productivity by providing flexible,
efficient data pipeline tools that reduced implementation overhead

4. Scalability: Established infrastructure patterns that scale to larger datasets and
more complex models



Key Challenges Addressed

High-Dimensional Temporal Data: EMG and IMU signals are high-frequency, multi-
channel time series that require careful handling to preserve temporal dependencies
while managing computational complexity.

Distributed Training Bottlenecks: Identified and resolved performance issues in
distributed training workflows, including data loading stalls, communication
overhead, and GPU underutilization.

Variable-Length Sequences: Developed efficient batching strategies for sequences of
varying lengths without excessive padding or memory waste.

Research Flexibility vs. Performance: Balanced the need for flexible experimentation
tools with the requirement for high-performance training pipelines.

Skills Demonstrated

Deep learning for time-series classification and sequence prediction

Distributed systems optimization and performance engineering

Production ML infrastructure development

Signal processing and biosensor data analysis

PyTorch ecosystem expertise (DataLoader, collate functions, distributed training)

Performance profiling and trace analysis

Research infrastructure design for ML teams

Future Directions

This work establishes foundations for continued advancement in biosignal-based
interaction:

Real-time Inference: Optimizing models for low-latency on-device inference

User Adaptation: Developing personalization techniques to adapt models to
individual users



Multimodal Fusion: Exploring deeper integration of EMG, IMU, and other sensor
modalities

Robustness: Improving model performance under challenging conditions
(motion artifacts, electrode placement variation)

Conclusion

This project demonstrates the intersection of machine learning research, systems
engineering, and human-computer interaction. By combining model development
with infrastructure optimization and thoughtful API design, the work enabled more
efficient training workflows and accelerated research progress in biosignal-based
interaction technologies at Meta.

The emphasis on both algorithmic innovation and engineering excellence reflects the
multidisciplinary nature of modern ML research, where success requires not only
developing effective models but also building the infrastructure that enables rapid
experimentation and deployment at scale.


