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1 Introduction

We investigate the merits of supervised pretraining using an intrinsic reward of
a Reinforcement learning model and planner for efficient exploration. The ob-
jective is to achieve an improved sample complexity for the downstream Model
Predictive Control task as compared to a randomly initialized model. Another
goal is to achieve better performance in the downstream RL algorithms ini-
tialized with the pretrained planner when compared to a randomly initialized
planner. The environment used was the Half-Cheetah v2 from the OpenAI gym
for the task of locomotion of a four legged robot.

The inspiration for the model ensemble is derived from (Chua et al. 2018).
The inspiration for using some form of disagreement metric as a proxy for in-
trinsic reward was partially derived from (Pathak, Gandhi, and Gupta 2019)
and its predecessors.

2 Results

2.1 Architecture

The control flow of our training process is depicted in Figure 1. The environment
and planner feed each other state and actions in a loop. After a set number
of such interactions between the ‘environment‘ and ‘planner‘, we have collected
{st, at, rt, st+1}N tuples, which are stored in a replay buffer.

After this, the dynamics model ensemble is trained to predict st+1 from st, at
pairs sampled from this replay buffer. The loss function for the models is the
Mean Squared Error.

The planner is trained at some set interval of steps. Its objective is to pro-
duce an action that maximizes the disagreement among the models’ predictions
of st+1 in the ensemble. Formally, its objective function can be written as
Equation 1. Note that the disagreement metric among the ensemble models is
a function of the Model parameters as well as the planner’s parameters. While
doing a backward pass to update the planner weights using this disagreement
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Figure 1: The flow begins with the environment which produces an state and
reward. This state is fed to the planner which produces an action. After a set
number of iterations in the loop, the model gets trained on a batch of states
and actions sampled from the buffer. At another set interval, the planner gets
trained using an objective calculated from the model predictions.

metric, we freeze the model weights to ensure that only the planner is being
trained to increase the disagreement.

2.2 Outcome

Figure 2 illustrates the 4 situations we consider.

• Use Pretrained policy (pt) and load Replay buffer (bt) from the training
phase. This option is denoted ‘ptbt’. The buffer is loaded from experience
gathered during the training and then added to during the RL phase.

• Use Pretrained policy (pt) but not Replay buffer (bf). This is denoted
‘ptbf’. In this case, the buffer is empty at the beginning and populated
entirely during the RL phase.

• Use random policy (pf) and load Replay buffer (bt). This is denoted ‘pfbt’.
The policy network is randomly initialized and entirely learned during the
RL phase. The buffer is loaded at the start.

• Use random policy (pf) and do not use replay buffer (bf). Both are
learner/filled during the RL phase.

3 Methodolgy

3.1 Part 1: Train the Policy Network to explore

As discussed, we are doing supervised learning of the policy using model dis-
agreement as the objective to maximize.
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Figure 2: TD3 (Fujimoto, Hoof, and Meger 2018) algorithm extrinsic reward
evaluated under the following cases: With (‘pt’) or without (‘pf’) using super-
vised policy pretraining and with (‘bt’) or without (‘bf’) pretrained buffer. The
lighter shade around each solid line is the uncertainty band across the 5 seeds
of training for each configuration.
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(a) Actor entropy with episodes.
(b) Extrinsic Reward (green) and intrin-
sic (blue( with episodes.

Figure 3: The entropy of the planner is shown on the left. The rewards from the
environment (green) and the intrinsic reward from model disagreement (blue)
are displayed on the right. The intrinsic reward gently increases despite being
explicitly optimized, whereas extrinsic reward falls drastically despite not being
optimized as such.

a∗ = arg maxPlanner Model-Disagreement(st, st+1, at) (1)

Each model is predicting the mean (µ) and variance (Σ) of the next-state dis-
tribution and the disagreement is as follows where ∀i, j ∈ [0, n], µ ∈ Rn

Model-Disagreement(st, st+1, at) = (µ[i]− µ[j]) ∗ e(Σ[i]−Σ[j])2 (2)

Besides monitoring the intrinsic reward as shown in Figure 4, we also plot
the entropy of the planner actions and plot the extrinsic reward (which, though,
is not optimized as such). 3) Val-loss on val set created using the previous round
of supervised training of this policy 4)

3.2 Part 2: Modeling new states

s∗t+1 = arg minModeli(st,at)
MSE(st+1, ŝt+1) (3)

3.3 Visualizing and verifying training

To verify our hypothesis that learning the planner should increase the intrinsic
reward, whereas learning the model should decrease it, we follow the procedure.
We train both the model and policy for 5k steps.

Next, we stop training the model and continue training the policy. This curve
is shown in green and can be seen to decrease after 5k steps. The y axis is the
negative disagreement or intrinsic reward. The planner is trained to maximize
disagreement; hence the green curve of negative disagreement dropping suggests
it is indeed being trained.
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Figure 4: This test involved visualizing the training loss for the cases when 1)
We stop training the planner but continue to train the model (green) 2) Stop
training the model and continue to train the planner (grey)

As an alternative test, we stop training the policy but continue training the
model after 5k steps. The gray line shows the intrinsic reward in that case.
We would expect the disagreement to reduce (hence negative disagreement to
increase) because the models repeatedly learn similar states. This is not clearly
visible in the training curve, but at the same time, there seems not to be any
drop in the y-axis for the gray curve either. Perhaps, this suggests a need for a
more powerful signal for the disagreement metric.

4 Discussion and Future directions

The results are not as hoped, especially in terms of improving the downstream
task. One indication of what is going wrong is that the intrinsic reward plot
(gray) when the model is learning, and the planner is not learning shown Figure
4 doesn’t increase. The gray curve not increasing might suggest the need to alter
the disagreement metric to reflect that when the model is learning, there should
be less disagreement. Another indication that there was a potential problem was
that in Figure 3b the intrinsic reward of the planner only gently increases as the
episodes of training the planner to maximize disagreement progress ahead. This
also hints that the disagreement metric needs to be altered so that the reward
should increase more rapidly during the training phase.

5 Code

Code for all experiments can be found at: https://github.com/rjk2147/

MBExp/tree/supervised_policy_learning
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