
Hierarchical, multi-session neural activity to

behavioral latent time series decoding via

Convolutional and LSTM models

Nihaar Shah (ns3413@columbia.edu), Matt Whiteway, Liam Paninski

December 23, 2020

1 Introduction

This project concerns decoding the time series of neural activity captured as
electrical signals from multiple trials into a latent representation of a video of
mouse behavior recorded during the trial. The primary question under investiga-
tion was whether a hierarchical deep learning model consisting of session-specific
layers and layers common to all sessions would improve the decoding accuracy
compared to a model that simply decodes single individual sessions.

In addition, we explored two types of deep learning models to decode this
time series data - 1) 1-dimensional convolution neural network for each ses-
sion followed by a Multi-Layer Perceptron and 2) A Long Short Term Memory
Network (LSTM), which is based on a recurrent neural network model that is
capable of preserving information from a longer time horizon than a typical
convolution window.

The rationale for favoring a hierarchical approach is the observation that
neural activity patterns for a particular behavior could have commonalities even
when captured during different trials. Hence, we could design a model that could
learn the composition of representations by allowing session-specific weights to
be trained in addition to weights that are common to all sessions.

The results indicated that our hierarchical model did not conclusively im-
prove upon the single decoder model for the neural data from the two sessions
that we used. The LSTM showed some improvement over the convolution-based
model.

2 Results

2.1 Architecture

Figure 1 shows our hierarchical model architecture in which there are 2 input
conv 1D ‘heads’ - one for each session for which neural activity was collected.

1



Figure 1: The Hierarchical convolutional decoding model has specialized conv
weights for each session and then common general weights. It is important to
note that data is passed into one of the input heads at a time, i.e., in a given
pass through this model, either session 1 or 2 data is passed and those specific
weights updated.

Following that, two common dense layers finally predict the behavioral latent
time series of just ten dimensions compared to the higher input neural dimen-
sion.

At a given time, a batch of neural data is passed through just one of the input
heads. The reason is that the target behavioral latent time series is separate for
each batch so clearly, passing in two batches as input for a single target output
is a mismatch.

2.2 Model Predictions

Figure 2 is a visual example of the target latent (blue) and predicted latent
(black) time series of 10 dimensions. This particular batch corresponds to
one with the lowest Mean Squared Error (MSE) summed across all dimensions
among all test batches for the hierarchical convolutional decoder model on the
session from 05-Dec. We do not display any more trace plot visualizations for
brevity.

Figure 3b and 3a display the MSE for every model and each batch (a point
represents a batch) from the test set from 2 sessions.

A visual inspection between the conv and LSTM model for both sessions
indicates that the scatter points for the LSTM are concentrated at a lower
value (hence better than conv). There seem to be a small (2 or 3) number of
outliers with a higher MSE in the LSTM case.

Another comparison can be made between the single decoder (both conv and
LSTM) and their hierarchical counterparts. This reveals that the hierarchical
conv model does approximately the same as the conv single model. The hier-

2



Figure 2: This is a traceplot of the true (black) and predicted (blue) behav-
ioral latent time series. The true traceplot is obtained from a Convolutional
Autoencoder (CAE) on mouse behavior videos. The blue traceplot is what our
decoding model predicts.

(a) 07-Dec Session Results (b) 05-Dec Session Results

Figure 3: MSE scatter plots for all the 4 models i.e. Hierarchical decoder Conv
& LSTM, and single decoder Conv and LSTM. The left and right plots are for
the 2 sessions.

3



archical LSTM, however, has a higher MSE by an offset than the single LSTM
decoder.

Comparing the Hierarchical versions of the LSTM and hierarchical Conv
decoders, we observe that conv does better, which is at odds with the observation
that the LSTM did better in the single decoder case.

3 Methodology

3.1 Data

Neural Activity data: was collected from a head-fixed mouse that behaved
freely (including spontaneous manipulation of a wheel with its forelimbs). Neu-
ral activity across multiple brain structures was electrically recorded using eight
Neuropixels probes.

Behavioral video: data was recorded as part of the behavenet project using
a single camera; gray-scale video frames were down-sampled to 112x192 pixels.
Data consists of 96k frames (40 Hz frame-rate), and “trials” were arbitrarily
defined as blocks of 1000 frames. Neural activity was binned at the video frame
rate.

Behavioral latents: The aforementioned behavioral videos were compressed
with a convolutional autoencoder (CAE), yielding a low-dimensional continu-
ous representation of behavior. The CAE architecture is fixed for all datasets,
except for the number of latent. The CAE was trained by minimizing the mean
squared error (MSE) between original and reconstructed frames. Further train-
ing details are available in the behavenet paper (Batty et al. 2019).

Before going into the details of the hyper-parameters of each hierarchical
model, here is a summary of the two broad models used in terms of the various
layer dimensions:

MODEL Neural Dim MLP1 Output Layers Hidden Units Target Latents
LSTM 258 or 259 50 2 20 10
Conv 258 or 259 - 2 20 10

3.2 Single session Conv1D decoding

Figure 4 represents the single session convolution-based model. The 1D con-
volution offers a fixed-sized window around neural dimensions for each time
point. We use the following hyper-parameters in this case: (N,Cout, Lout) =
(1, 20, Lout = Lin), kernel= (9, ), stride= (1, ), and padding= (4, ) although
each hyper-parameter should be tuned, given access to larger compute and time
resources. The interpretation of this is that we are learning 20 kernels of size
(9, ) as features.

4



Figure 4: Single Session Conv 1D model

Figure 5: Single Session LSTM model:

3.3 Single session LSTM decoding

Figure 5 represents the single session LSTM based model. The LSTM consists
of a cell state that carries relevant information from one time step to the next.
This cell state gets regulated to preserve relevant memory and ‘forget’ the rest,
with the help of gates. Each gate is essentially a single linear layer with a non-
linear activation. A gate utilizes the previous hidden state, previous cell state,
or the new sequence input. The equations governing the LSTM can be found
in Hochreiter and Schmidhuber 1997.

We have a session-specific linear layer that reduces the dimensions from the
session’s neural input dimension to 50 dimensions. This is then fed into the
LSTM. We use 20 dimensional hidden units for the LSTM, and stack 2 LSTMs
i.e. have 2 layers where the second LSTM takes in the output from the first
one.

3.4 Multi session Conv1D decoding

As discussed in the Results section before, Figure 1 represents the hierarchical
version of the convolution based model. The major distinction between the sin-

5



Figure 6: Hierarchical LSTM model for multi-session data.

gle session and multi session model is that there are session specific convolution
layers followed by common MLP layers.

3.5 Multi session LSTM decoding

Finally, the hierarchical version of the LSTM model is shown in Figure 6. It is
conceptually similar to the hierarchical conv model discussed before in that there
are session specific layers, except except MLP instead of conv. The common
layers involve the LSTM model discussed before and are followed by another
MLP. The rationale is that the MLP that are session specific could learn how
to make a smaller representation of the time-series that would be useful for the
LSTM to learn common patterns from.

4 Discussion and Future Directions

While the initial results in terms of reconstruction MSE in Figure 3b and 3a
are not in favor of the hierarchical approach, this can partly be due to lack of
resources to search the hyper-parameter space. One future task would be to
search over the number of hidden units and the number of layers. We should
then compare the best convolutional and LSTM models after finding the optimal
hyper-parameters.

The single LSTM appeared to have done slightly better than its convolu-
tional counterpart. We hope to explore a future direction to use the Sequence-
to-Sequence LSTM topology, which involves an LSTM encoder and an LSTM

6



(a) 07-Dec (b) 05-Dec (c) 05-Dec

Figure 7: Training loss curves showing various degrees of convergence of the
Conv models we trained.

(a) 07-Dec (b) 05-Dec (c) 05-Dec

Figure 8: Training loss curves showing various degrees of convergence of the
LSTM models we trained.

decoder. This allows for variable length predictions and has outperformed sim-
ple LSTMs in tasks such as translation. They also provide the basis for utilizing
the attention mechanism to allow the model to apply weights on the whole input
sequence while decoding each time point of the output sequence. We have made
an initial model of this mechanism for our time series data but due to lack of
time have not concluded the results.

5 Supplementary Material

We show training loss curves for the LSTM and convolutional models in the
single sessions - 05-Dec (Fig 7a, 8a) and 07-Dec (Fig 7b, 8b) as well as the
hierarchical multi-session case (Fig 7c, 8c). We trained the LSTM for twice as
many epochs (80 Vs 40) as compared to the rest of the models because its loss
hadn’t plateaued at 40 epochs. Training seems to have converged according to
the plots.

References

[Bat+19] Eleanor Batty et al. “BehaveNet: nonlinear embedding and Bayesian
neural decoding of behavioral videos”. In: NeurIPS. 2019.

7



[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Mem-
ory”. In: Neural Computation 9.8 (1997), pp. 1735–1780.

8


